МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПО ПРОВЕДЕНИЮ ШКОЛЬНОГО И МУНИЦИПАЛЬНОГО ЭТАПОВ ВСЕРОССИЙСКОЙ ОЛИМПИАДЫ ШКОЛЬНИКОВ ПО ФИЗИКЕ В 2020/21 УЧЕБНОМ ГОДУ

Рекомендации для школьного и муниципального этапов Всероссийской олимпиады школьников по физике в 2020/2021 учебном году утверждены на заседании Центральной предметно-методической комиссии по физике протокол № 3 от 07.07.2020 г.).

Составители методических рекомендаций:

А. А. Воронов

М. Ю. Замятнин

В. П. Слободянин

СОДЕРЖАНИЕ

Введение	4
Общие положения	5
1. Методические рекомендации по разработке заданий школьного и муниципального этапов, включая принципы составления олимпиадных заданий и формирования	
комплектов олимпиадных заданий для школьного и муниципального этапов	6
олимпиады с учётом актуальных документов, регламентирующих организацию и проведение олимпиады	7
3. Характеристика содержания школьного и муниципального этапов олимпиады по физике	7
4. Описание необходимого материально-технического обеспечения для выполнения олимпиадных заданий	8
5. Порядок проведения очных туров	
6. Методика оценивания выполнения олимпиадных заданий	
7. Критерии оценивания олимпиадных работ	11
8. Порядок показа выполненных олимпиадных заданий	
9. Порядок рассмотрения апелляций по результатам проверки жюри олимпиадных	
заданий	13
10. Подведение итогов олимпиады	14
11. Перечень справочных материалов, средств связи и электронно-вычислительной	
техники, разрешённых к использованию во время проведения олимпиады	16
12. Список интернет-ресурсов	16
13. Список рекомендуемой литературы	16
13.1. Учебники и учебные пособия	16
13.2. Сборники задач и заданий по физике	17
14. Контактная информация	18
Приложение 1	19
Приложение 2	30
При поучание 3	31

ВВЕДЕНИЕ

Настоящие Методические рекомендации подготовлены Центральной предметнометодической комиссией по физике и адресованы региональным предметнометодическим комиссиям, жюри школьного и муниципального этапов всероссийской олимпиады школьников.

В Методических рекомендациях определяется порядок проведения олимпиад по физике, требования к структуре и содержанию олимпиадных заданий, приводятся возможные источники информации для подготовки задач, а также рекомендации по оцениванию решений участников олимпиад.

Центральная предметно-методическая комиссия по физике выражает надежду, что представленные методические рекомендации окажутся полезными при проведении школьного и муниципального этапов всероссийской олимпиады по физике, и желает успехов организаторам в их проведении.

Методические рекомендации для школьного и муниципального этапов всероссийской олимпиады школьников по физике в 2020/21 учебном году утверждены на заседании Центральной предметно-методической комиссии по физике (протокол № 3 от 07.07.2020 г.).

По вопросам организации и проведения школьного и муниципального этапов олимпиады можно обращаться по адресу: physolymp-2020-2021@mail.ru

Председатель Центральной предметно-методической комиссии по физике

А. А. Воронов

ОБЩИЕ ПОЛОЖЕНИЯ

1. Школьный и муниципальный этапы всероссийской олимпиады проводятся в соответствии с актуальным Порядком проведения олимпиады.

Основными целями и задачами школьного и муниципального этапов олимпиады по физике являются:

- повышение интереса школьников к занятиям физикой;
- более раннее привлечение школьников, одарённых в области физики, к систематическим внешкольным занятиям;
- выявление на раннем этапе способных и талантливых учеников в целях более эффективной подготовки национальной сборной к международным олимпиадам, в том числе к естественно-научной олимпиаде юниоров IJSO;
- стимулирование всех форм работы с одарёнными детьми и создание необходимых условий для поддержки одарённых детей;
- выявление и развитие у обучающихся творческих способностей и интереса к научно-исследовательской деятельности в области физики, в том числе в области физического эксперимента;
 - популяризация и пропаганда научных знаний.
- 2. Всероссийская олимпиада школьников по физике начинается со школьного этапа. Этот этап самый массовый и открытый. В нём на добровольной основе могут принимать индивидуальное участие все желающие школьники 5—11 классов организаций, осуществляющих образовательную деятельность по образовательным программам основного общего и среднего общего образования. Любое ограничение списка участников по каким-либо критериям (успеваемость по различным предметам, результаты выступления на олимпиадах прошлого года и т. п.) является нарушением Порядка проведения всероссийской олимпиады школьников и категорически запрещается.
- 3. Участники школьного и муниципального этапов олимпиады вправе выполнять олимпиадные задания, разработанные для 7 и более старших классов по отношению к тем, в которых они проходят обучение. В случае прохождения на последующие этапы олимпиады данные участники выполняют олимпиадные задания, разработанные для класса, который они выбрали на школьном и муниципальном этапах олимпиады.

1. МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПО РАЗРАБОТКЕ ЗАДАНИЙ ШКОЛЬНОГО И МУНИЦИПАЛЬНОГО ЭТАПОВ, ВКЛЮЧАЯ ПРИНЦИПЫ СОСТАВЛЕНИЯ ОЛИМПИАДНЫХ ЗАДАНИЙ И ФОРМИРОВАНИЯ КОМПЛЕКТОВ ОЛИМПИАДНЫХ ЗАДАНИЙ ДЛЯ ШКОЛЬНОГО И МУНИЦИПАЛЬНОГО ЭТАПОВ

- 1.1. Тематика заданий определяется согласно Приложению 1. В задание **недопустимо** включать задачи на темы, которые по программе будут изучаться в более поздний период или в старших классах. Также недопустимы качественные вопросы (типа объяснить явление), не предполагающие конкретного однозначного ответа.
- 1.2. На муниципальном этапе допускается предлагать участникам олимпиады выполнить одну экспериментальную или псевдоэкспериментальную задачу (в условии приводятся экспериментальные данные, полученные организаторами, а участники олимпиады производят обработку результатов и последующие необходимые вычисления).
- 1.3. Задания школьного и муниципального этапов олимпиады не должны носить характера контрольной работы. В задания следует включать задачи, выявляющие способности обучающихся применять полученные в школе знания, а не их объём. Не следует делать упор на математическую сложность вычислений физических задач. Вместе с тем на муниципальном этапе задачи должны быть несколько сложнее задач школьного этапа.
- 1.4. Желательно, чтобы задачи охватывали большинство разделов школьной программы по физике, изученных к моменту проведения олимпиады. Задание должно содержать задачи различной сложности. Нужно иметь в виду, что часть победителей и призёров муниципального этапа будут участвовать в региональном этапе. Поэтому однадве задачи из комплекта должны соответствовать уровню регионального этапа.
- 1.5. В комплекте задач каждого класса должно быть тематическое разнообразие: в него должны входить задачи по механике, термодинамике и молекулярной физике, задачи на законы постоянного тока, по электромагнетизму, оптике. Задания для 7 и 8 классов должны включать задачи, не требующие большого объёма объяснений и вычислений (в этом возрасте учащиеся не обладают достаточной культурой изложения хода своих рассуждений). Полезно включать задачи на перевод единиц, на вычисление

плотности, на простейшие виды движения; в 8 классе добавляются задачи на уравнение теплового баланса, закон Архимеда, элементы статики.

Допустимо и даже желательно включение задач, объединяющих различные разделы школьной программы по физике.

1.6. Желательна новизна задач для участников олимпиады. В случае, когда задания выбираются из печатных изданий или из Интернета, методическая комиссия соответствующего этапа должна по возможности использовать источники, неизвестные участникам, а известные задачи перерабатывать (по крайней мере изменять фабулу).

2. ТРЕБОВАНИЯ К ОРГАНИЗАЦИИ И ПРОВЕДЕНИЮ ШКОЛЬНОГО И МУНИЦИПАЛЬНОГО ЭТАПОВ ОЛИМПИАДЫ С УЧЁТОМ АКТУАЛЬНЫХ ДОКУМЕНТОВ, РЕГЛАМЕНТИРУЮЩИХ ОРГАНИЗАЦИЮ И ПРОВЕДЕНИЕ ОЛИМПИАДЫ

Для проведения школьного и муниципального этапов всероссийской олимпиады школьников 2020/21 учебного года необходимо учитывать Постановление Главного государственного санитарного врача Российской Федерации от 30.06.2020 г. № 16 «Об утверждении санитарно-эпидемиологических правил СП 3.1/2.4.3598-20 «Санитарно-эпидемиологические требования к устройству, содержанию и организации работы образовательных организаций и других объектов социальной инфраструктуры для детей и молодёжи в условиях распространения новой коронавирусной инфекции (COVID-19)» (зарегистрировано 03.07.2020 г. за № 58824).

3. ХАРАКТЕРИСТИКА СОДЕРЖАНИЯ ШКОЛЬНОГО И МУНИЦИПАЛЬНОГО ЭТАПОВ ОЛИМПИАДЫ ПО ФИЗИКЕ

- 3.1. Туры и этапы олимпиады могут проводиться как в очной форме, так и с использованием информационно-коммуникационных технологий.
- 3.2. Школьный этап проводится в один тур в течение одного дня для образовательной организации, подчинённой муниципальному органу, осуществляющему управление в сфере образования.
- 3.3. Муниципальный этап проводится, как правило, в один тур в течение одного дня, общего для всех образовательных организаций, подчинённых региональному органу, осуществляющему управление в сфере образования.

- 3.4. Индивидуальный отчёт с выполненным заданием участники сдают в письменной форме. **Дополнительный устный опрос не допускается**.
- 3.5. Олимпиада по физике проводится независимо в каждой из пяти возрастных параллелей для 7, 8, 9, 10 и 11 классов.
- 3.6. Во время школьного этапа участникам предлагается комплект, состоящий из 4 задач для параллели 7—8 классов и 5 задач для 9, 10 и 11 классов.

На муниципальном этапе рекомендуется предлагать комплект из 4 задач для параллелей 7, 8 и 9 классов и 5 задач для 10 и 11 классов. Для 9 класса допускается комплект из 5 задач.

- 3.7. Решение заданий проверяется жюри, формируемым организатором олимпиады.
- 3.8. Индивидуальный итоговый результат каждого участника подсчитывается как сумма полученных этим участником баллов за решение каждой задачи с учётом апелляции.
- 3.9. Окончательные результаты проверки решений всех участников фиксируются в итоговой таблице, представляющей собой ранжированный список участников, расположенных по мере убывания набранных ими баллов. Участники с одинаковыми баллами располагаются в алфавитном порядке. На основании итоговой таблицы и в согласии с установленной квотой жюри определяет победителей и призёров соответствующего этапа олимпиады.
- 3.10. На основе протоколов школьного этапа по всем образовательным организациям местный орган управления образованием устанавливает проходной балл минимальную оценку на школьном этапе, необходимую для участия в муниципальном этапе.
- 3.11. На основе протоколов муниципального этапа по всем муниципальным образованиям региональный орган управления образованием определяет проходной балл минимальную оценку на муниципальном этапе, необходимую для участия в региональном этапе.
- 3.12. Данный проходной балл устанавливается отдельно в возрастных параллелях 7, 8, 9, 10 и 11 классов и может быть разным для этих параллелей.

4. ОПИСАНИЕ НЕОБХОДИМОГО МАТЕРИАЛЬНО-ТЕХНИЧЕСКОГО ОБЕСПЕЧЕНИЯ ДЛЯ ВЫПОЛНЕНИЯ ОЛИМПИАДНЫХ ЗАДАНИЙ

- 4.1. Муниципальный этап олимпиады по физике проводится в установленном оргкомитетом формате в один тур, и материальные требования для проведения олимпиады не выходят за рамки организации стандартного аудиторного режима. На муниципальном этапе допускается включение в комплект одной псевдоэкспериментальной задачи.
- 4.2. При очном формате олимпиады тиражирование заданий осуществляется с учётом следующих параметров: листы бумаги формата А5 или А4, чёрно-белая печать 12-м или 14-м кеглем (каждый участник получает листы с условиями задач). Задания должны тиражироваться без уменьшения.
- 4.3. Участник олимпиады использует на туре свои письменные принадлежности, циркуль, транспортир, линейку, непрограммируемый калькулятор. Но организаторы должны предусмотреть некоторое количество запасных ручек с пастой синего цвета и линеек на каждую аудиторию.
- 4.4. При очном формате олимпиады каждому участнику оргкомитет должен предоставить тетрадь в клетку (для черновых записей предлагается использовать последние страницы тетради) или листы формата А4 со штампом или колонтитулом организатора олимпиады.
- 4.5. После начала тура участники олимпиады могут задавать вопросы по условиям задач (в письменной форме). Устные вопросы не допускаются. В этой связи у дежурных по аудитории должны быть в наличии листы бумаги для вопросов.
- 4.6. Для полноценной работы членам жюри должно быть предоставлено отдельное помещение, оснащённое техническими средствами (компьютер, принтер, копировальный аппарат) с достаточным количеством бумаги и канцелярских принадлежностей (ножницы, степлер и несколько упаковок скрепок к нему, антистеплер, клеящий карандаш, скотч).
 - 4.7. Каждый член жюри должен быть обеспечен ручкой с красной пастой.

5. ПОРЯДОК ПРОВЕДЕНИЯ ОЧНЫХ ТУРОВ

- 5.1. Перед началом тура дежурные по аудиториям напоминают участникам основные положения регламента (о продолжительности тура, о форме, в которой разрешено задавать вопросы, о порядке оформления отчётов о проделанной работе и т. д.).
- 5.2. Во время школьного этапа обучающимся в 7 и 8 классах предлагается решить 4 задачи, на выполнение которых отводится 2 урока (1,5 астрономических часа). Для обучающихся в 9 классе 4 задачи на 2 астрономических часа, в 10 и 11 классах

предлагается решить 5 задач, на выполнение которых отводится 2,5 астрономических часа.

- 5.3. Во время муниципального этапа обучающимся в 7, 8 и 9 классах предлагается решить 4 задачи, на выполнение которых отводится 3 астрономических часа. Обучающимся в 9, 10, 11 классах предлагается решить 5 задач, на выполнение которых отводится 3 часа 50 минут. Допускается (при большом числе участников) давать в 9 классе 5 задач на 3 часа 50 минут.
- 5.4. Для выполнения заданий олимпиады каждому участнику выдаётся тетрадь в клетку или специальные бланки со штрихкодом (для черновых записей предлагается использовать последние страницы тетради или обратную сторону бланков).
- 5.5. Участникам олимпиады запрещено использование для записи решений ручки с красными чернилами.
- 5.6. Участники не вправе общаться друг с другом и свободно перемещаться по аудитории во время тура.
- 5.7. Члены жюри раздают условия участникам олимпиады и записывают на доске время начала и окончания тура в данной аудитории.
- 5.8. На муниципальном этапе **через 15 минут** после начала тура участники олимпиады могут задавать вопросы по условиям задач (в письменной форме). В этой связи у дежурных по аудитории должны быть в наличии листы бумаги для вопросов. Ответы на содержательные вопросы озвучиваются членами жюри для всех участников данной параллели. На некорректные вопросы или вопросы, свидетельствующие о том, что участник невнимательно прочитал условие, следует ответ: «**Без комментариев**». За 30 минут до окончания тура вопросы по условию задач перестают приниматься.
- 5.9. Дежурный по аудитории напоминает участникам о времени, оставшемся до окончания тура, за полчаса, за 15 минут и за 5 минут.
- 5.10. Участник олимпиады обязан до истечения отведённого на тур времени сдать свою работу (тетради и дополнительные листы).
- 5.11. Участник может сдать работу досрочно, после чего должен незамедлительно покинуть место проведения тура.

6. МЕТОДИКА ОЦЕНИВАНИЯ ВЫПОЛНЕНИЯ ОЛИМПИАДНЫХ ЗАДАНИЙ

6.1. По окончании олимпиады работы участников кодируются, а после окончания проверки декодируются.

- 6.2. Жюри олимпиады оценивает записи, приведённые **только** в чистовике. **Черновики не проверяются.**
- 6.3. Не допускается снятие баллов за плохой почерк, за решение задачи нерациональным способом, не в общем виде или способом, не совпадающим с предложенным методической комиссией.
- 6.4. Правильный ответ, приведённый без обоснования или полученный из неправильных рассуждений, не учитывается.

7. КРИТЕРИИ ОЦЕНИВАНИЯ ОЛИМПИАДНЫХ РАБОТ

- 7.1. Критерии оценивания разрабатываются авторами задач и приводятся в решении. Если задача решена не полностью, то этапы её решения оцениваются в соответствии с критериями оценок по данной задаче.
- 7.2. Если задача решена не полностью, а её решение не подпадает под авторскую систему оценивания, то жюри вправе предложить свою версию системы оценивания, которая должна быть согласована с разработчиками комплекта заданий.
 - 7.3. Решение каждой задачи оценивается целым числом баллов от 0 до 10.
- 7.4. Проверка работ осуществляется жюри олимпиады согласно стандартной методике оценивания решений:

Баллы	Правильность (ошибочность) решения		
10	Полное верное решение		
8	Верное решение. Имеются небольшие недочёты, в целом не влияющие на решение		
5—6	Решение в целом верное, однако содержит существенные ошибки (не физические, а математические)		
5	Найдено решение одного из двух возможных случаев		
2—3	Есть понимание физики явления, но не найдено одно из необходимых для решения уравнений, в результате полученная система уравнений не полна и невозможно найти решение		
0—1	Есть отдельные уравнения, относящиеся к сути задачи, при отсутствии решения (или при ошибочном решении)		

- 7.5. Все пометки в работе участника члены жюри делают только красными чернилами. Баллы за промежуточные выкладки ставятся около соответствующих мест в работе (это исключает пропуск отдельных пунктов из критериев оценок). Итоговая оценка за задачу ставится в конце решения. Кроме того, член жюри заносит её в таблицу на первой странице работы и ставит свою подпись (с расшифровкой) под оценкой.
- 7.6. В случае неверного решения необходимо находить и отмечать ошибку, которая к нему привела. Это позволит точнее оценить правильную часть решения и сэкономит время в случае апелляции.
- 7.7. По окончании проверки член жюри, ответственный за данную параллель, передаёт представителю оргкомитета работы и итоговый протокол.
- 7.8. Протоколы проверки работ после их подписания ответственным за класс и председателем жюри вывешиваются на всеобщее обозрение в заранее отведённом месте или размещаются на сайте организатора олимпиады.

8. ПОРЯДОК ПОКАЗА ВЫПОЛНЕННЫХ ОЛИМПИАДНЫХ ЗАДАНИЙ

- 8.1. Разбор заданий и показ работ проводятся обязательно.
- 8.2. Основная цель процедуры разбора заданий информировать участников олимпиады о правильных решениях предложенных заданий, объяснить типичные ошибки и недочёты, проинформировать о системе оценивания заданий. Решение о форме проведения разбора заданий принимает организатор соответствующего этапа олимпиады.
- 8.3. В процессе проведения разбора заданий участники олимпиады должны получить всю необходимую информацию по поводу оценивания их работ, что должно привести к уменьшению числа необоснованных апелляций по результатам проверки.
- 8.4. В ходе разбора заданий представляются наиболее удачные варианты выполнения олимпиадных заданий, анализируются типичные ошибки, допущенные участниками олимпиады, сообщаются критерии оценивания каждого из заданий.
- 8.5. Каждый участник имеет право ознакомиться с результатами проверки своей работы до подведения официальных итогов олимпиады.
- 8.6. Порядок проведения показа работ и апелляций по оценке работ участников определяется совместно оргкомитетом и жюри школьного или муниципального этапа. Показ работ может проводиться, как правило, в очной форме (допускается и

дистанционная форма). В связи с необходимостью объективной и качественной оценки работ, а также предоставления участникам олимпиады возможности ознакомления с результатами проверки и проведения апелляций рекомендуется определять победителей и призёров олимпиады не ранее чем через день после проведения олимпиады. Окончательное подведение итогов олимпиады возможно только после показа работ и проведения апелляций.

- 8.7. Дистанционный показ работ проводится только для участников олимпиады.
- 8.8. Участник имеет право задать члену жюри вопросы по оценке приведённого им решения.
- 8.9. Во время очного показа работ участникам олимпиады запрещается иметь при себе письменные принадлежности.
 - 8.10. Не рекомендуется осуществлять показ работ в день проведения олимпиады.
 - 8.11. Не допускается изменение баллов во время показа работ.

9. ПОРЯДОК РАССМОТРЕНИЯ АПЕЛЛЯЦИЙ ПО РЕЗУЛЬТАТАМ ПРОВЕРКИ ЖЮРИ ОЛИМПИАДНЫХ ЗАДАНИЙ

- 9.1. Апелляция проводится в случаях несогласия участника олимпиады с результатами оценивания его олимпиадной работы (в том числе и в случае, если баллы выставлены неверно по техническим причинам).
- 9.2. Не рекомендуется осуществлять проведение апелляций в день проведения олимпиалы.
- 9.3. Для проведения апелляции участник олимпиады подаёт письменное заявление. Заявление на апелляцию принимается в течение одного астрономического часа после окончания показа работ на имя председателя жюри в установленной форме (см. Приложение 2).
- 9.4. Рассмотрение апелляции проводится в спокойной и доброжелательной обстановке. Участнику олимпиады, подавшему апелляцию, предоставляется возможность убедиться в том, что его работа проверена и оценена в соответствии с критериями и методикой, разработанными предметно-методической комиссией.
- 9.5. При рассмотрении апелляции присутствует участник олимпиады, подавший заявление, и члены жюри, проверявшие данную задачу, ответственный за класс (параллель) и председатель жюри.

- 9.6. Критерии и методика оценивания олимпиадных заданий не могут быть предметом апелляции и пересмотру не подлежат.
- 9.7. Решения по апелляции принимаются простым большинством голосов. В случае равенства голосов председатель жюри имеет право решающего голоса.
- 9.8. По результатам рассмотрения апелляции выносится одно из следующих решений:
 - об отклонении апелляции и сохранении выставленных баллов;
 - об удовлетворении апелляции и корректировке баллов.
 - 9.9. Решения по апелляции являются окончательными и пересмотру не подлежат.
- 9.10. Рассмотрение апелляции оформляется протоколом (см. Приложение 3), который подписывается членами жюри.
- 9.11. Протоколы рассмотрения апелляции передаются председателю жюри для внесения соответствующих изменений в протокол и отчётную документацию.
 - 9.12. Документами по проведению апелляции являются:
 - письменные заявления об апелляциях участников олимпиады;
 - журнал (листы) регистрации апелляций.

10. ПОДВЕДЕНИЕ ИТОГОВ ОЛИМПИАДЫ

- 10.1. Победители и призёры олимпиады определяются в каждой из параллелей отдельно. Итоговый результат каждого участника подсчитывается как сумма полученных этим участником баллов за решение каждой задачи с учётом апелляции.
- 10.2. Победители и призёры олимпиады определяются на основании рейтинга и в соответствии с квотой, установленной организатором этого этапа.

Примечание: победителем и призёром олимпиады признаётся участник, набравший число баллов, установленное организатором соответствующего этапа.

- 10.3. Председатель жюри передаёт протокол по определению победителей и призёров в оргкомитет для подготовки приказа об итогах соответствующего этапа олимпиады.
- 10.4. Представительство муниципальных образований Российской Федерации на региональном этапе олимпиады по физике определяется соответствующими нормативными документами.
- 10.5. При решении вопроса о приглашении участника на региональный этап олимпиады на основании результата, показанного на муниципальной олимпиаде, может

запрашиваться копия его работы для проведения координации полученных баллов за решения в соответствии с критериями, утверждёнными предметно-методической комиссией. При отсутствии такой координации в приглашении может быть отказано.

11. ПЕРЕЧЕНЬ СПРАВОЧНЫХ МАТЕРИАЛОВ, СРЕДСТВ СВЯЗИ И ЭЛЕКТРОННО-ВЫЧИСЛИТЕЛЬНОЙ ТЕХНИКИ, РАЗРЕШЁННЫХ К ИСПОЛЬЗОВАНИЮ ВО ВРЕМЯ ПРОВЕДЕНИЯ ОЛИМПИАДЫ

- 11.1. Во время туров участникам олимпиады запрещено пользоваться какими-либо средствами связи.
- 11.2. Участникам олимпиады запрещается приносить в аудитории свои тетради, справочную литературу и учебники, электронную технику (кроме непрограммируемых калькуляторов): телефоны, iPad, «умные» часы и т. д.

12. СПИСОК ИНТЕРНЕТ-РЕСУРСОВ

http://physolymp.ru Сайт олимпиад по физике

http://www.4ipho.ru/ Сайт подготовки национальных команд по физике и

по естественным наукам к международным олимпиадам

http://potential.org.ru Журнал «Потенциал»

http://kvant.mccme.ru Журнал «Квант»

http://edu-homelab.ru Сайт олимпиадной школы при МФТИ по курсу

«Экспериментальная физика»

http://olymp74.ru Олимпиады Челябинской области

http://physolymp.spb.ru Олимпиады по физике Санкт-Петербурга

http://vsesib.nsesc.ru/phys.htmlOлимпиады по физике НГУOлимпиады по физике МГУ

mephi.ru/schoolkids/olimpiads/ Олимпиады по физике НИЯУ МИФИ

http://mosphys.olimpiada.ru/ Московская олимпиада школьников по физике

http://www.belpho.org/ Белорусские олимпиады

13. СПИСОК РЕКОМЕНДУЕМОЙ ЛИТЕРАТУРЫ

13.1. Учебники и учебные пособия

- 1. *Козел С. М.* Физика 10—11: Пособие для учащихся и абитуриентов. В 2 ч. М.: Мнемозина, 2010.
 - 2. Бутиков Е. И., Кондратьев А. С. Физика: Механика. М.: Физматлит, 2004.
- 3. *Бутиков Е. И.*, *Кондратьев А. С.* Физика: Электродинамика. Оптика. М.: Физматлит, 2004.

- 4. *Бутиков Е. И.*, *Кондратьев А. С.* Физика: Строение и свойства вещества. М.: Физматлит, 2004.
- 5. *Кикоин А. К.*, *Кикоин И. К.*, *Шамеш С. Я.*, *Эвенчик Э. Е.* Физика: Учебник для 10 класса школ (классов) с углублённым изучением физики. М.: Просвещение, 2004.
- 6. *Мякишев Г. Я.* Учебник для углублённого изучения физики. Механика. 9 класс. М.: Дрофа, 2006.
- 7. *Мякишев Г. Я.*, *Синяков А. З.* Физика. Молекулярная физика. Термодинамика: 10 класс: Учебник для углублённого изучения физики. М.: Дрофа, 2008.
- 8. *Мякишев Г. Я.*, *Синяков А. З.*, *Слободсков Б. А.* Физика: Электродинамика: 10—11 классы: Учебник для углублённого изучения физики. М.: Дрофа, 2006.
- 9. *Мякишев Г. Я.*, *Синяков А. З.* Физика: Колебания и волны. 11 класс: Учебник для углублённого изучения физики. М.: Дрофа, 2006.
- 10. *Мякишев Г. Я.*, *Синяков А. З.* Физика: Оптика. Квантовая физика. 11 класс: Учебник для углублённого изучения физики. М.: Дрофа, 2006.
- 11. *Кабардин О. Ф.*, *Орлов В. А.* Экспериментальные задания по физике. 9—11 классы. М.: Вербум М, 2001.
 - 12. Сквайре Дж. Практическая физика. М.: Мир, 1971.

13.2. Сборники задач и заданий по физике

- 1. *Баканина Л. П., Белонучкин В. Е., Козел С. М.* Сборник задач по физике для 10—11 классов с углублённым изучением физики /Под редакцией С. М. Козела. М.: Вербум М, 2003.
- 2. Всероссийские Олимпиады по физике. 1992—2004/Науч. Ред.: С. М. Козел, В. П. Слободянин. М.: Вербум М, 2005.
- 3. Задачи по физике/ Под ред. О. Я. Савченко, Новосибирск: Новосибирский государственный университет, 2008.
- 4. Козел С. М., Коровин В. А., Орлов В. А., Иоголевич И. А., Слободянин В. П. ФИЗИКА. 10—11 классы. Сборник задач и заданий с ответами и решениями: Пособие для учащихся общеобразовательных учреждений. М.: Мнемозина, 2004.
- 5. Сборник задач для подготовки к олимпиадам по физике «Основы механики», 7 класс/ Под ред. М. Ю. Замятнина. Сириус, МФТИ
- 6. Сборник задач для подготовки к олимпиадам по физике «Тепловые явления. Постоянный ток. Оптика», 8 класс/ Под ред. М. Ю. Замятнина. Сириус, МФТИ

- 7. Гольдфарб Н. И. Физика: Задачник: 9—11 классы: Учеб. пособие для общеобразоват. учреждений. М.: Дрофа, 2007.
- 8. Варламов С. Д., Зинковский В. И., Семёнов М. В. Задачи Московских городских олимпиад по физике. 1986 2005. М.: Изд-во МЦНМО, 2006.
- 9. *Кабардин О. Ф.*, *Орлов В. А.*, *Зильберман А. Р.* Физика: Задачник: 9—11 классы: Учеб. пособие для общеобразоват. учреждений. М.: Дрофа, 2004.
- 10. *Кабардин О. Ф.*, *Орлов В. А.* Международные физические Олимпиады школьников /Под ред. В. Г. Разумовского. М.: Наука, 1985.
 - 11. Кондратьев А. С., Уздин В. М. Физика: Сборник задач. М.: Физматлит, 2005.
- 12. *Красин М. С.* Решение сложных и нестандартных задач по физике. Эвристические приёмы поиска решений. М.: Илекса, 2009.
- 13. *Слободецкий И. Ш., Орлов В. А.* Всесоюзные Олимпиады по физике: Пособие для учащихся. М.: Просвещение, 1982.
- 14. *Черноуцан А. И.* Физика. Задачи с ответами и решениями. М.: Высшая школа, 2008.
- 15. *Манида С. Н.* Физика. Решение задач повышенной сложности. СПб.: Изд-во С.-Петербургского университета, 2004.
- 16. *Буховцев Б. Б., Кривченков В. Д., Мякишев Г. Я., Сараева И. М.* Сборник задач по элементарной физике: Пособие для самообразования. —М.: Физматлит, 2000.

14. КОНТАКТНАЯ ИНФОРМАЦИЯ

Дополнительную информацию по вопросам организации и проведения школьного и муниципального этапов всероссийской олимпиады школьников по физике можно получить по электронной почте, обратившись в Центральную предметно-методическую комиссию:

Слободянин Валерий Павлович, заместитель Председателя Центральной предметно-методической комиссии по физике

E-mail: physolymp-2020-2021@mail.ru

приложение 1

Программа всероссийской олимпиады школьников по физике с учётом сроков прохождения тем

Комплекты заданий различных этапов олимпиад составляются по принципу «накопленного итога» и могут включать как задачи, связанные с разделами школьного курса физики, которые изучаются в текущем году, так и задачи по пройденным ранее разделам.

Выделенные жёлтым цветом темы

не следует включать в задания ближайшей олимпиады, в дальнейшие — можно.

В столбце «Месяц» указываются примерные сроки (календарный месяц) прохождения темы.

7 класс

Темы занятий ориентированы на наиболее распространённые учебники и программы.

- 1. Пёрышкин А. В. Физика-7. М.: Дрофа, любой год издания;
- 2. Громов С. В., Родина Н. А. Физика-7. М.: Просвещение, любой год издания.

№ п/п	Тема	Месяц	Примечания
1	Измерение физических величин. Цена деления.	9	Расчёт погрешности
	Единицы измерений физических величин. Перевод		потребуется только
	единиц измерений. Погрешность измерения (общие		на заключительном
	понятия)		этапе олимпиады
			в 8 классе!
2	Механическое движение. Путь. Перемещение.	10	
	Равномерное движение. Скорость. Средняя		
	скорость. Графики зависимостей величин,		
	описывающих движение. Работа с графиками, в том		
	числе культура построения графиков. Общее		
	понятие об относительности движения. Сложение		
	скоростей для тел, движущихся параллельно		

№ п/п	Тема	Месяц	Примечания
3	Школьный этап олимпиады Необходимо принимать во внимание, что школьники (физика) не знакомы с понятием проекции (это тема начала 9 класса); (математика) школьники не знают корни и тригонометрию	10	
4	Объём. Масса. Плотность. Смеси и сплавы	11	Если 2-й этап в середине декабря, то можно включать эту тему
6	Муниципальный этап олимпиады Математика! Школьники умеют решать линейные уравнения, знают признаки равенства треугольников, параллельность прямых Инерция. Взаимодействие тел. Силы в природе (тяжести, упругости, трения). Закон Гука.	11—12	
7	Сложение параллельных сил. Равнодействующая Олимпиада Максвелла (региональный этап)	1	На эксперименталь- ном туре уметь пользоваться: линей- кой, секундомером, мерным цилиндром, весами
8	Механическая работа для сил, направленных вдоль перемещения, мощность, энергия. Графики зависимости силы от перемещения и мощности от времени	1 (4)	Основные понятия. Вычисление работы через площадь под графиками перемещения и мощности

№ п/п	Тема	Месяц	Примечания
9	Простые механизмы, блок, рычаг. Момент силы.	3 (5)	
	Правило моментов (для сил, лежащих в одной		
	плоскости и направленных вдоль параллельных		
	прямых). Золотое правило механики. КПД		
10	Давление	4(1)	
11	Основы гидростатики. Закон Паскаля. Атмосферное	4 (2)	
	давление. Гидравлический пресс. Сообщающиеся		
	сосуды. Закон Архимеда. Плавание тел.		
	Воздухоплавание		
12	Олимпиада Максвелла (заключительный этап)	4	На эксперименталь-
	!!! Здесь и далее может потребоваться умение		ном туре уметь
	работать с графиками: расчёт площади под		пользоваться
	графиком, проведение касательных для учёта		динамометром.
	скорости изменения величины.		
	<u>Математика!</u> Школьники знают начальные		Оценивается культура
	сведения об окружности и некоторые её свойства		построения графиков
	(диаметр, хорда, касательная). Формулы		
	сокращённого умножения (разность квадратов,		
	сумма и разность кубов)		

Темы занятий ориентированы на наиболее распространённые учебники и программы. В 8 классе расхождения между программами С. В. Громова и А. В. Пёрышкина становятся очень существенными. Предметно-методическим комиссиям рекомендуется придерживаться программы, соответствующей учебнику А. В. Пёрышкина.

№ п/п	Тема	Месяц	Примечания
1	Тепловое движение. Температура. Внутренняя	9	Основные понятия
	энергия. Теплопроводность. Конвекция. Излучение		без формул
2	Количество теплоты. Удельная теплоёмкость	9—10	
	вещества. Удельная теплота сгорания, плавления,		
	испарения. Уравнение теплового баланса		

№ п/п	Тема	Месяц	Примечания
	при охлаждении и нагревании		
3	Агрегатные состояния вещества. Плавление. Удельная теплота плавления. Испарение. Кипение. Удельная теплота парообразования	10	
5	Школьный этап олимпиады Математика! Необходимо принимать во внимание, что школьники не знают корни и тригонометрию Мощность и КПД нагревателя. Мощность	11—12	Если второй этап
	тепловых потерь. Уравнение теплового баланса с учётом фазовых переходов, подведённого тепла и потерь		в середине декабря, то можно включать эту тему
6	Муниципальный этап олимпиады Математика! Школьники знают теорему Пифагора, квадратные корни и элементы тригонометрии (sin, сов и tg острого угла)	11—12	
7	Работа газа и пара при расширении. Двигатель внутреннего сгорания. Паровая турбина. КПД теплового двигателя	12	Основные понятия без формул
8	Олимпиада Максвелла (региональный этап)	1	На экспериментальном туре уметь пользоваться: жидкостным манометром, барометром, тонометром, термометром/термопарой
9	Электризация. Два рода зарядов. Взаимодействие заряженных тел. Проводники и диэлектрики. Электрическое поле. Делимость электрического заряда. Электрон. Строение атомов	1	Основные понятия без формул
10	Электрический ток. Источники электрического тока. Электрическая цепь и её составные части. Сила тока. Электрическое напряжение.	2	

№ п/п	Тема	Месяц	Примечания
	Электрическое сопротивление проводников.		
	Удельное сопротивление		
11	Закон Ома для участка цепи. Последовательное и	2	
	параллельное соединение проводников. Расчёт		
	простых цепей постоянного тока		
12	Нелинейные элементы и вольтамперные	2–3	На уровне ВАХ (лампа
	характеристики (ВАХ)		накаливания, диод)
13	Работа и мощность электрического тока. Закон	3	
	Джоуля – Ленца		
14	Олимпиада Максвелла (заключительный этап)	4	Для эксперименталь-
	Не обязательно, но целесообразно в индиви-		ного тура: резисторы,
	дуальном порядке изучение понятия потенциала.		реостаты, лампы
	Пересчёт симметричной звезды в треугольник и		накаливания,
	обратно.		источники тока.
	!!! Начиная с этого этапа и далее на эксперимен-		Электроизмерительные
	тальных турах элементарный учёт погрешности		приборы: амперметр,
	обязателен!		вольтметр, омметр,
	<u>Математика!</u> Пройдены квадратные корни и		мультиметр
	квадратные уравнения. Теорема Виета		
15	Магнитное поле. Силовые линии. Магнитное поле	4	Основные понятия
	прямого тока. Магнитное поле катушки с током.		без формул
	Электромагниты. Постоянные магниты.		
	Магнитное поле Земли. Действие магнитного поля		
	на проводник с током		
16	Источники света. Распространение света. Тень и	5	Основные понятия.
	полутень. Камера-обскура. Отражение света.		Умение строить ход
	Законы отражения света. Плоское зеркало.		лучей
	Область видимости изображений		
17	Преломление света. Законы преломления (формула	5	Основные понятия
	Снелла). Линзы. Фокус и оптическая сила линзы.		без формулы тонкой
	Построения хода лучей и изображений в линзах.		линзы.
	Область видимости изображений. Фотоаппарат.		Умение строить ход

№ п/п	Тема	Месяц	Примечания
	Близорукость и дальнозоркость. Очки.		лучей
	<u>Математика!</u> Малые углы и понятие радианной		
	меры угла (изучить факультативно)		

В 9 классе сложная ситуация с программами. В рамках подготовки к ОГЭ и в ущерб механике большая часть времени уделяется быстрому поверхностному прохождению (не изучению) на описательном уровне всех тем школьной физики. В более выигрышном положении оказываются физико-математические лицеи и специализированные школы, в которых за счёт предпрофильных часов и элективных курсов удаётся дать курс механики на глубоком уровне. В этом случае обучение может вестись по первому тому учебника Г. Я. Мякишева «Физика», т. 1—5 (М.: Дрофа, любой год издания).

№ п/п	Тема	Месяц	Примечания
1	Кинематика материальной точки. Системы	9—10	
	отсчёта. Равномерное движение. Средняя скорость.		
	Мгновенная скорость. Ускорение.		
	Прямолинейное равнопеременное движение.		
	Свободное падение. Графики движения (пути,		
	перемещения, координат от времени); графики		
	скорости, ускорения и их проекций в зависимости		
	от времени и координат		
2	Движение по окружности. Нормальное и	10	
	тангенциальное ускорение. Угловое перемещение		
	и угловая скорость		
3	Школьный этап олимпиады	10	
	Математика! Пройдены тригонометрические		
	функции		
4	Относительность движения. Закон сложения	10—11	Если второй этап
	скоростей. Абсолютная, относительная и		в декабре, то можно
	переносная скорость		включать эту тему

№ п/п	Тема	Месяц	Примечания
5	Криволинейное равноускоренное движение.	10—11	Если 2-й этап
	Полёты тел в поле однородной гравитации. Радиус		в середине декабря,
	кривизны траектории		то можно включать эту
			тему
6	Кинематические связи (нерастяжимость нитей,	11	
	скольжение без отрыва, движение без		
	проскальзывания). Плоское движение твёрдого		
	тела		
7	Муниципальный этап олимпиады	11—12	Задач на динамику
	Математика! Пройдены тригонометрические		быть не должно!
	функции (sin, cos, tg) двойного угла, методы		
	решений уравнений высоких степеней		
8	Динамика материальной точки. Силы. Векторное	12	
	сложение сил. Законы Ньютона		
9	Динамика систем с кинематическими связями	12—1	
10	Региональный этап олимпиады	1	Допускаются задачи на
	В олимпиадах регионального и заключительного		динамику матери-
	этапов могут быть задачи на сложение ускорений в		альной точки. Для
	разных поступательно движущихся системах		экспериментального
	отсчёта		тура: плоские зеркала
11	Гравитация. Закон всемирного тяготения. Первая	1	
	космическая скорость. Перегрузки и невесомость.		
	Центр тяжести		
12	Силы трения. Силы сопротивления при движении	1—2	
	в жидкости и газе		
13	Силы упругости. Закон Гука	2	
14	Импульс. Закон сохранения импульса. Центр масс.	2—3	
	Теорема о движении центра масс. Реактивное		
	движение		
15	Работа. Мощность. Энергия (гравитационная,	3—4	
	деформированной пружины). Закон сохранения		
	энергии. Упругие и неупругие взаимодействия.		

№ п/п	Тема	Месяц	Примечания
	Диссипация энергии		
16	Статика в случае непараллельных сил. Устойчивое	4	
	и неустойчивое равновесие		
17	Заключительный этап олимпиады	4	Для эксперименталь-
	<u>Математика!</u> Не обязательно , но целесообразно в		ного тура: стробоскоп.
	индивидуальном порядке изучение производной,		лампы накаливания,
	её физического смысла. Пройдены прогрессии		диоды,
			в том числе светодио-
			ды (на уровне ВАХ)
18	Механические колебания. Маятник.	4–5	Основные понятия и
	Гармонические колебания. Волны. Определения		определения. Без задач
	периода колебаний, амплитуды, длины волны,		на расчёт периодов и
	частоты		без формул периодов
			маятников
19	Основы атомной и ядерной физики	5	Основные понятия
			без формул

В 10 классе существует два типа программ. По одному из них первые месяцы углублённо повторяется механика. И лишь к концу первого полугодия начинается изучение газовых законов. Заканчивается год электростатикой и конденсаторами. Весь остальной материал — постоянный ток, магнитные явления, переменный ток, оптика, атомная и ядерная физика — изучается в 11 классе.

В тех школах, где в 9 классе велась предпрофильная подготовка, высвобождается дополнительное время (за счёт существенного сокращения часов на повторение механики) и практически сразу начинается изучение молекулярной физики на углублённом уровне. Во втором полугодии полностью изучаются электростатика и законы постоянного тока. Заканчивается год магнитными явлениями без изучения самоиндукции и катушек индуктивности.

Предлагаемый план в целях оптимизации подготовки национальных сборных к международным олимпиадам ориентируется на второй тип программ. За счёт выделения

цветом тех тем, которые могут изучаться позднее в непрофильных классах, учитываются интересы последних.

Рекомендованные учебники и программы.

- 1. *Козел С. М.* Физика 10—11: Пособие для учащихся и абитуриентов. В 2 ч. М.: Мнемозина, 2010.
 - 2. Мякишев Г. Я. Физика. В 5 т. —М.: Дрофа, любой год издания.
 - 3. Физика-10/ Под ред. А. А. Пинского. М.: Просвещение, любой год издания.

№ п/п	Тема	Месяц	Примечания		
1	Газовые законы. Изопроцессы. Законы Дальтона и	9			
	Авогадро. Температура				
2	Основы МКТ	10			
3	Потенциальная энергия взаимодействия молекул	10	Основные понятия		
			без формул		
4	Школьный этап олимпиады	10	Без газовых законов!		
5	Термодинамика. Внутренняя энергия газов.	11			
	Количество теплоты. 1-й закон термодинамики.				
	Теплоёмкость. Адиабатный процесс. Циклические				
	процессы. Цикл Карно				
6	Насыщенные пары, влажность	11			
7	Муниципальный этап олимпиады	11—12	Без газовых законов!		
8	Поверхностное натяжение. Капилляры. Краевой	12			
	угол. Смачивание и несмачивание				
9	Электростатика. Закон Кулона. Электрическое	12—1			
	поле. Напряжённость. Теорема Гаусса. Потенциал				
10	Региональный этап олимпиады	1	Возможны задачи на		
			МКТ, газовые законы		
			и термодинамику.		
			Циклов и влажности		
			нет!		
11	Проводники и диэлектрики в электростатических	1			
	полях				
12	Конденсаторы. Соединения конденсаторов.	1			
	Энергия конденсатора. Объёмная плотность				

№ п/п	Тема	Месяц	Примечания		
	энергии электрического поля				
13	ЭДС. Методы расчёта цепей постоянного тока	2			
	(в том числе правила Кирхгофа, методы узловых				
	потенциалов, эквивалентного источника,				
	наложения токов и т. п.). Нелинейные элементы				
14	Работа и мощность электрического тока	3			
15	Электрический ток в средах. Электролиз	4			
16	Заключительный этап олимпиады	4	Для эксперимен-		
	<u>Математика!</u> В физико-математических классах		тального тура:		
	пройден логарифм		конденсаторы,		
			транзисторы.		
			Измерительные		
			приборы: психрометр		
17	Магнитное поле постоянного тока. Силы Лоренца	5			
	и Ампера				

- В 11 классе придерживаемся логики, выбранной в 10 классе.
- 1. *Козел С. М.* Физика 10—11: Пособие для учащихся и абитуриентов. В 2 ч. М.: Мнемозина, 2010.
 - 2. Физика-11 / Под ред. А. А. Пинского. М.: Просвещение, любой год издания.
 - 3. *Мякишев Г. Я.* Физика. В 5 т. М.: Дрофа, любой год издания.

№ п/п	Тема	Месяц	Примечания		
1	Закон индукции Фарадея. Вихревое поле.	10	Если второй этап		
	Индуктивность, катушки, R,L,С-цепи		в середине декабря,		
			то можно включать эту		
			тему		
2	Школьный этап олимпиады	10			
3	Колебания механические и электрические	11			
4	Муниципальный этап олимпиады	11	Без темы		
	<u>Математика!</u> Пройдены логарифмы		«Колебания»!		

№ п/п	Тема	Месяц	Примечания		
5	Переменный ток. Трансформатор	11			
6	Электромагнитные волны	12			
7	Геометрическая оптика. Зеркала (плоские и сферические). Закон Снелла. Призмы	12			
	Формула тонкой линзы. Системы линз. Оптические приборы. Очки	12			
8	Региональный этап олимпиады	1	Без формулы линз		
	Математика! Пройдены производные				
9	Волновая оптика. Интерференция. Дифракция	1—2			
10	Теория относительности	2			
11	Основы атомной и квантовой физики	3			
12	Ядерная физика.	4—5			
13	Заключительный этап олимпиады	4	Для эксперименталь-		
	На заключительном этапе могут предлагаться		ного тура:		
	задачи на законы Кеплера и сферические зеркала.		генератор переменного		
	<u>Математика!</u> Пройдены интегралы		напряжения,		
			осциллограф, лазер,		
			катушки		
			индуктивности,		
			дифракционные		
			решётки		

приложение 2

ЗАЯВЛЕНИЕ УЧАСТНИКА ОЛИМПИАДЫ НА АПЕЛЛЯЦИЮ

	Председателю жюри муниципального этапа всероссийской олимпиады школьников по физике ученикакласса
	(полное название образовательной организации) ———————————————————————————————————
	Заявление
	проверку задачи № в моей работе, так как я не согласенми. (Далее участник олимпиады коротко обосновывает своё
Дата	

приложение 3

ПРОТОКОЛ № ____

рассмотрения апелляции участника олимпиады по физике

			(Ф.И.О. полност	ъю)			
ученика _	клас	cca					
		(полное назва	ание образователі	ьной организаци	и)		
Место про	оведения						
			бъект Федерации				
Дата и вре	емя						
Присутст	·					_	
		аются Ф.И.О. пол	лностью).				
		указываются Ф.И		гью).			
1		•		,			
Краткая	запись	разъяснений	членов	жюри	(по	сути	апелляции
Результат	апелляции	· ·					
•		ная участнику ол	импиады, о	ставлена б	ез измен	ения;	
•		ная участнику ол					
, ,	,	j j	, , ,				
Cr	Э РЗУЛЬТЯТОМ	апелляции согла	сен (не согі	іясен)			
O P	, co y 1121 a 1 o 111		icon (ne con			ь заявителя).	
			Члены жю	mu			
	Ф.И.О	1	- 1,16ны жю		Подп	HCI.	
	Ф.И.О				Подп		
	Ф.И.О				Подп		
			0				
			ены Оргког -	митета			
	Ф.И.О				Подп		
	Ф.И.Ф				Подп	ись	